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ABSTRACT

The enormous attention and interest by both academics and industrial field for greener, biodegradable 
and renewable materials implicate a persuasive trends towards the encroachment of nano-materials 
science and technology in the polymer composite field. Nanocomposites creates high impacts on the 
development of nano materials with advanced features to solve potential risks with their wider industrial 
applications. Nano fibres are highly engineered fibres with diameters less than 100 nm that offer several 
advantages over conventional fibres. One dimensional (1D) nanostructure fillers such as carbon nano 
fibre and cellulose nano fibre are the most common, promising and unique for developing multifunctional 
nanocomposites with better properties and extensive applications compared to micro size fibres. Nano 
fibre technology brings revolution by providing products that are completely safe, truly greener, reliable 
and environmentally friendly for industries, researchers and users. This review article is intended to 
present valuable literature data on research and trend in the fields of carbon and cellulose nano fiber, 
nanocomposites with specific focus on various applications for a sustainable and greener environment..  

Keywords: Nano filler, nano fibre, nano fibres 
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INTRODUCTION

The nanotechnology provides new challenges 
and contests to fulfil various demands in the 
fields of medicine, automotive, computer 
science, transportation, biotechnology, 
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agriculture, food packaging, military, cosmetics, solar cells and textile sectors, intelligent 
fabrics, composites and power industries (Lee et al., 2012, pp. 4078-4086; Rhim et al., 2013, 
pp. 1629-1652; Bilbao-Sainz et al., 2011, pp. 1549-1557; Varshney & Naithani 2011, pp. 43-
61; Amritkar et al., 2011, pp. 45-53).

Nanocomposites gained worldwide research interest and are reported as the 21st century 
multiphase solid material having at least one dimensions phases in the nanometre range (1 
nm = 10–9 m) (Saba et al., 2014, pp. 2247-2273). Nanocomposite materials are considered as 
potential substitutes to overawe the drawbacks of conventional composites and monolithic, 
usually at lower nano filler loadings (3-5 wt.%), owing to nanometric size effects (Mariano et 
al., 2014, pp. 791-806; Rhim et al., 2013, pp. 1629-1652). In particular, nanomaterials/nano filler 
are regarded as highly potential filler materials for the enhancement of physical, mechanical 
and thermal properties of polymeric matrix materials (thermoplastics or thermosets) chiefly 
by increasing the counter face adhesion, matrix modulus and strength (Saba et al., 2014, pp. 
2247-2273; Raza et al., 2015, pp. 9-16). Nano scale materials or fillers are classified into 
three groups, based on the number of dimensions in the nano metre range, as nanoparticles, 
nanotubes and nano-layers (Chrissafis & Bikiaris, 2011, pp. 1-24). The different types of nano 
materials are shown in Figure 1.
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These nanoparticles interact with the polymeric chains, either physically or covalently, 
resulting nanocomposite network having unique properties (Gaharwar et al., 2014, pp. 441-
453; Schexnailder & Schmidt, 2009, pp. 1-11; Mariano et al.,2014, pp. 791-806).

Nanocomposite Synthesis and Characterisation Techniques

The nanocomposite structure typically consists of polymer matrix material reinforced with 
the nano-sized filler components in the forms of fibres, particles, whiskers and nanotubes. 
Interestingly there are five different routes to synthesise the nanocomposites including  
template synthesis, intercalation of polymer or prepolymer from solution, in-situ intercalative 
polymerisation, direct mixing between the polymer and particles and melt intercalation process 
(Mittal, 2009, pp. 992-1057; Alateyah et al., 2013; Tanahashi, 2010, pp. 1593-1619). The 
different methods of processing nanocomposites are illustrated in Figure 2.
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The same methods have also been applied for the preparation of layered silicates based on 
nanocomposites (Tanahashi, 2010, pp. 1593-1619). However, melt mixing, solvent casting, 
electrospinning  and in situ polymerisation are important techniques for the fabrication of nano 
fibre based polymer composites (Zimmermann et al., 2010, pp. 1086-1093).

Different equipment and techniques are being used for the characterisation of nano 
fibres and their nanocomposites, including scanning tunnelling microscopy (STM), fourier 
transformed infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), atomic force 
microscopy (AFM), X ray photoelectron spectroscopy (XPS), wide-angle X-ray scattering 
(WAXS), scanning and transmission electron microscopy (SEM/TEM) and differential scanning 
calorimetry (DSC) (Camargo et al., 2009, pp. 1-39).
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Figure 2. (a) Template Synthesis of Nanostructured Materials, (b) Intercalation of polymer 
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casting method for nanocomposites fabrication
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Nano Fibres

Nano fibres are the highly engineered textiles, defined as fibres with diameters less than 100 nm. 
Nano fibres possess several unique properties and show several advantages over micro such as:

●● Lightweight material, builds network structures 

●● Renewable resource, biodegradable (cellulosic nano fibres only)

●● High strength and stiffness

●● Transparent, translucent, water storage capacity and rheology modifier

●● High surface area and aspect ratio 

●● High reactivity, barrier properties (Chen et al., 2011, pp. 1804-1811)

Researchers around the globe are developing new imaginable applications possibilities for nano 
fibres. The two most common and established nano fibres in the field of polymer composites 
are carbon nano fibres and cellulose nano fibres (shown in Figures 3a-b). 
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General Methods for Manufacturing Nano Fibres

Currently, various techniques such as electrospinning, self-assembly, meltblowing, bicomponent 
spinning, force-spinning, phase-separation, drawing and flash-spinning are being used to 
overcome the growing demands for the fabrication of polymeric nano fibres. However, 
electrospinning is a widely used technique for the fabrication of continuous nano fibres because 
of its simplicity and suitability for a variety of polymers, ceramics and metals (Ahmed et al., 
2015, pp. 15-30). Some of the methods are explained in brief.

Electrospinning

The most common and reliable method for the production of smooth nano fibres from a variety 
of polymers with controllable morphology is observed through electrospinning (Figure 4). 
It shares the characteristics of both electrospraying and conventional solution dry spinning 
of fibres based on the effect of electrostatic force on liquids. Electrospinning process can be 
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classified into two groups according to the method of preparing the polymer, namely, solution 
electrospinning and melt electrospinning (Nayak et al., 2012, pp. 129-147; Wang et al., 2013, 
pp. 1173-1243).

Solution blow spinning

A solution blow spinning technique was developed using elements of both electrospinning 
and meltblowing technologies as an alternative method for making non-woven webs of micro 
and nanofibres (Figure 5). The produced nano fibres possess comparable diameters but fibre 
production rate (measured by the polymer injection rate) is several times higher with those 
made by the electrospinning process (Medeiros et al., 2009, pp. 2322-2330; Oliveira et al., 
2011, pp. 3396-3405).
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Meltblowing

Meltblowing is a simple, versatile and one-step process for the production of materials in 
micrometre and smaller scale. In the meltblowing process, a molten polymer is extruded through 
the orifice of a die (Figure 6). The fibres are formed by the elongation of the polymer streams 
coming out of the orifice by air-drag and are collected on the surface of a suitable collector 
in the form of a web. The average fibre diameter mainly depends on the throughput rate, 
melt viscosity, melt temperature, air temperature and air velocity. The meltblowing apparatus 
consists of two extruders with different barrel diameters to create different shear rates. The 
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process is suitable for many melt-spinnable commercial polymers, copolymers and their blends 
such as polyesters, polyolefins, polyurethanes, nylons, poly vinyl chloride, polyvinyl acetate 
and ethylene vinyl acetate. The meltblown fibres significantly reduced average diameter and 
enhanced surface area to mass ratio compared to conventional meltblown fibres (Nayak et al., 
2012, pp. 129-147; Hassan et al., 2013, pp. 336-344).
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Nano Fibre Reinforcement Effects

Fibrous nano materials such as nano fibres and carbon nanotubes, in addition to polymer matrix, 
provide reinforcing efficiency because of their high aspect ratios (Luo & Daniel, 2003, pp. 
1607-1616). Some of the reinforcement effects imparted by nano-particulate/fibrous that are 
being added to polymer matrix include the improvement in gas barrier properties, mechanical 
properties (tensile strength, stiffness, toughness), dimensional stability, thermal conductivity, 

Phase separation

Phase separation process is a relatively simple procedure and its requirements are very minimal 
in terms of equipment compared with the electrospinning and self-assembly techniques (Vasita 
& Katti 2006, p. 15). A schematic representation of phase separation is shown in Figure 7.
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flame retardancy, thermal barrier, chemical and ablation resistance when compared to 
conventionally filled materials  (Saba et al., 2014, pp. 2247-2273).

However certain disadvantages are also found to be associated involving optical, 
sedimentation and dispersion problems, viscosity improvement and black coloured offered by 
dispersing carbon nanofibre (CNT). Alternatively, dispersion of the nano fibres and adhesion 
at the nanofibre–matrix interface play crucial roles in determining the mechanical properties 
of the nanocomposite (Hussain et al., 2006, pp. 1511-1575).

Carbon Nano Fibres

Carbon nano fibres are promising one dimensional carbon based nanomaterials used as fillers 
in developing multifunctional nanocomposites (Poveda & Gupta, 2014, pp. 416-422). Carbon 
nano fibres are a thousand time smaller than conventional fibres (CF) and larger than nanotubes. 
The fibres are made up of interlocking sheets of graphenes, which in turn are made up of carbon 
atoms. The major differences between conventional carbon fibres (CFs) and carbon nano fibres 
are their size and methods of preparation or synthesis. Conventional CF has diameters of several 
micrometres, while carbon nano fibres have diameters of 50–200 nm (Feng et al., 2014, pp. 
3919-3945). Unlike conventional fibre spinning techniques (wet spinning, dry spinning, melt 
spinning, gel spinning), which are capable of producing polymer fibres with diameters down 
to the micrometre range, carbon nano fibres are produced by electrostatic spinning or through 
electrospinning process in the submicron to nanometre diameter range (Raghavan et al., 2012, 
pp. 915-930). Figure 8 gives a schematic illustration of the difference between carbon nano 
fibre and conventional ones (CF).
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Currently, carbon nano fibers are prepared mainly by two methods, namely, catalytic 
thermal chemical vapour deposition growth (VG) and electrospinning, followed by heat 
treatment (Feng et al., 2014). Researchers observed that vapour grown carbon nano fibres 
(VGCNF) are very similar to multi-walled carbon nanotubes (MWCNTs) in morphology but 
they have larger diameters than MWCNTs (Raza et al., 2015). MWCNTs and single walled 
carbon nano tubes (SWNTs) are 2–3 times more expensive than VGCNFs. VGCNFs are 
regarded as strong potential alternatives to carbon fibres (CFs) and carbon black (high structured 
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CB) due to their lower loading concentration compared with CF and CB in certain electrical 
conductivities apparatus (Al-Saleh et al., 2009, pp. 2-22).

Some researchers also stated that the carbon nano fibres have higher reinforcing capabilities 
than micro carbon fibres (Al-Saleh et al., 2011, pp. 2126-2142). The sensitivity of CNFs and 
their composites mainly count on their electrical performances (Feng et al., 2014, pp. 3919-
3945).

Cellulose Nano Fibres

Cellulose, being the most abundant material and renewable resource on the earth, has received 
more interest from researchers for a decade (Langan et al., 2014, pp. 63-68; Miao et al., 2014, 
pp. 109-113; Orehek et al., 2013, pp. 10-17; Giudicianni et al., 2013, pp. 213-222). Typical 
chemical structures of cellulose are shown in Figure 9 below.
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Cellulose nano fibres being extracted from cellulosic materials are one of the most 
advanced engineered biomass materials. Cellulose nano fibres can be extracted from the cell 
walls of  different renewable sources including cotton, bacteria, wood, straw and sea animals 
called tunicates either by simple mechanical methods or a combination of both chemical and 
mechanical methods (Kalia et al.,  2011; Wang & Sain, 2007, pp. 538-546; Tang & Weder, 2010, 
pp. 1073-1080). Several processes have been used to extract highly purified nano fibres from 
cellulosic materials. The most established are through mechanical techniques (cryocrushing, 
grinding,  high-pressure homogenizing), chemical treatments (acid hydrolysis, antioxidants), 
biological treatments (enzymatic hydrolysis), electrospinning and ultra-sonication methods 
(Chen et al., 2011, pp. 453-461; Chen et al., 2011, pp. 1804-1811). Cellulose nanocrystals 
(CNCs) are also termed as cellulose nano fibres, whiskers, micro-crystallites, microcrystals, 
nanoparticles or nano-fibrils by many researchers; however, there are some contradictions on 
these terms (Siqueira et al., 2010, pp. 728-765; Kalia et al., 2011). Figure 10 displays the nano 
material definition standard terminology by the technical association of the pulp and paper 
industry (TAPPI). 
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Source: Siqueira et al., 2010, pp. 728-765

Furthermore, cellulose nano fibres have significant properties such as low cost, light 
weight, raw material availability, nanoscale dimension, renewability, outstanding mechanical, 
electrical, thermal properties, biodegradation properties along with unique morphology (Cao 
et al., 2013, pp. 819-826;  Tang & Weder, 2010, pp. 1073-1080). The many steps involved in 
the preparation of nano cellulose particles are summarised in Figure 11. 
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The milled raw fibres are acquiesced to alkali and bleaching treatments with NaClO2. 
Under optimal conditions, lignin and hemicelluloses contents are allowed to get eliminated in 
these steps, while cellulose moieties remain intact. The bleached fibres are then hydrolysed 
(acid hydrolysis treatment) or disintegrated (mechanical shearing at high pressure) (Siqueira 
et al., 2010, pp. 728-765). However, the only drawback of cellulose nano fibres is that they are 
made by treating wood pulp with strong acids and oxidants, followed by mechanical division 
of cellulose fibres into their nanoscale subunits, which are quite expensive (Chen et al., 2014, 
pp. 1517-1528).
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Nano Carbon Fibres Based Polymer Composites

Currently the researchers expressed a great attention in fabrication of nano composites with 
multifunctional properties by the incorporation of cheaper and easily available nano carbon 
fibres. The carbon nano fibres hold superior electrical conductivity, mechanical and thermal 
properties such as low density, high aspect ratio, high modulus and negative CTE in developing 
bulk composite materials for various structural applications (Ghasemi et al., 2015, pp. 519-527; 
Jung et al., 2012, pp. 21845-21848). The dispersion of nano carbon fibres in polymer matrix 
can be realised mainly by two approaches: the melt mixing process and the sonication process 
in low viscosity solutions (Feng et al., 2014, pp. 3919-3945). The overall performances of 
the nano carbon fibres/polymer composites are largely governed by the dispersion of the nano 
carbon fibres in the polymer matrix (Feng et al., 2014, pp. 3919-3945; Eslami et al., 2015, pp. 
22-31). Some of the important studies reported on carbon nano fibre composites are tabulated 
in Table 1.

Table 1 
Reported recent research work on carbon nano fibres reinforced composites  

Matrix/Reinforcement References
(PAA)/MnO- Carbon nano fibers (Wang et al., 2015, pp. 164-170)
Epoxy/ Carbon nano fibers (Sánchez et al., 2011, pp. 1-11)
Cement/ Carbon nano fibers (Xie et al., 2012, pp. 3270-3275)
PLA/ (VGCNF) (Teng et al., 2011, pp. 928-934)
Epoxy/Carbon nano fibers (Poveda & Gupta, 2014, pp. 416-422)
Phenolic/ Carbon nano fibers-MWCNT (Eslami et al., 2015, pp. 22-31)
Epoxy/ Carbon nano fibers-CNT (Ghasemi et al., 2015, pp. 519-527)
Polypyrrole/ Carbon nano fibers-BC (Zhang et al., 2015, pp. 552-559)
(PAN)/(C/MnFe2O4) (Kidkhunthod et al., 2016, pp. 436-442)
Polyester/Carbon nano fibers-Cloisite Na+ clay (Zhao et al., 2009, pp. 2081-2087)
Epoxy/Carbon nanofiber paper-(SWCNT)-(MWCNT) (Wu et al., 2010, pp. 1799-1806)
Epoxy/Carbon nano fiber-(MWCNT/GNP) (Zhou et al., 2013, p. 83)
Epoxy/(VGCNF) (Raza et al., 2015, pp. 9-16)
(PAN)/Carbon nano fiber-(Si NP) (Wang et al., 2015, pp. 164-170)
Epoxy/Carbon nano fibers-CF (Ma et al., 2015, pp. 65-74)
UP/ Carbon nano fiber (Gou et al., 2010, pp. 192-198)
Epoxy/Carbon nano fiber-CNT (Sharma & Lakkad, 2011, pp. 8-15)
Cement/Carbon nano fiber-CF (Baeza et al., 2013, pp. 841-855)
Note. Polyamic acid (PAA), Silicon (Si), Nano particles (NP), Multi walled carbon nanotube (MWCNT), 
Graphene nanoplatelet (GNP), Polyacrylonitrile (PAN), Bacterial cellulose (BC), Vapour-grown carbon 
nanofibre (VGCNF), Elecrospun Carbon-Manganese ferrite (C/MnFe2O4), Polylactic acid (PLA), Single-
walled carbon nanotube (SWCNT), Multi-walled carbon nanotube (MWCNT) membranes (buckypaper), 
Unsaturated polyester (UP), Carbon fibre (CF).
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Nano Cellulose Fibres Based Polymer Composites

Cellulose nano fibres and their composites, either in whisker or crystal form, offer a great deal 
of interest for both researchers and scientist. Moreover, the cellulose nano fibres or nanocrystals 
(CNCs), acid hydrolysate of cellulose, are attractive environmentally friendly nanomaterials 
for the preparation of low-density nanocomposites (Neto et al., 2013, pp. 480-488; Rosli et 
al., 2013, pp. 1893-1908). The solvent casting Siqueira et al., 2010, pp. 728-765) and melting 
compounding is the most common technique to prepare cellulose nanoparticles reinforced 
composites (extrusion method) (Nakagaito et al., 2009, pp. 1293-1297). A further classification 
of solvent casting includes three systems (water soluble polymers, polymer emulsions, non-
hydrosoluble polymers), depending on the type of polymer matrix (shown in Figure 12) 
(Siqueira et al., 2010, pp. 728-765).
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Figure 12. Solvent casting technique for the fabrication of cellulose based nanocomposites 

(Source: Siqueira et al., 2010, pp. 728-765), 

 

Reinforced cellulose nano fibres offer high strength, stiffness, biodegradability and 

renewability to the polymer resin for the fabrication of nanocomposites (Kalia et al., 2011; 

Eichhorn et al., 2010, p. 1; Kohler & Nebel, 2006, pp. 97-106). Cellulose nanoparticles 

reinforcement, however, has some weaknesses like poor wettability, high moisture 

absorption, unusual processing temperature and incompatibility with most of polymeric 

matrices (Siqueira et al., 2010, 728-765). A lot of research works have explored a broad 

range of different polymer matrices such as polyethylene, polypropylene, polybutadiene, 

poly (butyl methacrylate), polyurethanes and poly (vinyl chloride) (Tang & Weder, 2010, 

Figure 12. Solvent casting technique for the fabrication of cellulose based nanocomposites
Source: Siqueira et al., 2010, pp. 728-765

Reinforced cellulose nano fibres offer high strength, stiffness, biodegradability and 
renewability to the polymer resin for the fabrication of nanocomposites (Kalia et al., 2011; 
Eichhorn et al., 2010, p. 1; Kohler & Nebel, 2006, pp. 97-106). Cellulose nanoparticles 
reinforcement, however, has some weaknesses like poor wettability, high moisture absorption, 
unusual processing temperature and incompatibility with most of polymeric matrices (Siqueira 
et al., 2010, 728-765). A lot of research works have explored a broad range of different polymer 
matrices such as polyethylene, polypropylene, polybutadiene, poly (butyl methacrylate), 
polyurethanes and poly (vinyl chloride) (Tang & Weder, 2010, pp. 1073-1080). Some of the 
reported research works on nano cellulose reinforced composite are presented in Table 2. 
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Table 2 
Some of the recent research works on nano cellulose reinforced matrix composite  

Matrix/Reinforcement References
Optically curable (SLRs)/ CNCs (Kumar et al., 2012, pp. 5399-5407)
(NBR)/CNCs (Cao et al., 2013, pp. 819-826)
PLA latex/ NFC (Larsson et al., 2012, pp. 2460-2466)
(PLLA)/CNCs (Lizundia et al., 2015, pp. 256-265)
PP/CNCs (Khoshkava & Kamal, 2014, pp. 8146-8157)
PVA/CNCs of Phormium tenax and Berlinka Flax (Fortunati et al., 2013, pp. 825-836)
PLA/CNCs (Pei et al., 2010, pp. 815-821)
PLA/CNCs (Fortunati et al., 2012, pp. 948–956)
PLA/(s-CNC)-(Ag-NP) (Fortunati et al., 2012, pp. 2027-2036)
PU/CNCs (Rueda et al., 2011, pp. 1953-1960)
(PLA-PHB)/(CNCs)films (Arrieta et al., 2014, pp. 16-24) 
MAH grafted (PLA)/CNCs (Zhou et al., 2013, pp. 3847-3854),
(PVA)/(CNC (PLGA(NPs) (Rescignano et al., 2014, pp. 47-58)
PLA/Pristine CNCs-(s-CNC)/(Ag-NP) (Fortunati et al., 2013)
PLA/ CNCs (Pracella et al., 2014, pp. 3720-3728)
(PVA)/Corncob CNCs (Silvério et al., 2013, pp. 427-436)
(PVA)/Corncob CNCs (Silvério et al., 2013, pp. 427-436)
PVA/(CNCs) extracted from Flax, Phormium  (MCC) (Fortunati et al., 2013, pp. 837-848)
Isotactic (PP)/Cellulose whiskers (Ljungberg et al., 2006, pp. 6285-6292)
Elastomeric (PU)/Isocyanate-rich CNCs (Rueda et al., 2011, pp. 1953-1960)
PLA/(CNCs)from Phormium tenax leaves (Fortunati et al., 2014, pp. 77-91)
PVA/(CNCs) from okra bahmia (Abelmoschus 
Esculentus) bast fibers

(Fortunati et al., 2013, pp. 3220-3230)

(PMMA)/CNCs (Dong et al., 2012, pp. 2488-2495)
SBR/(CNCs) isolated from cotton (Annamalai et al., 2014, pp. 967-976)
(PHBV)/(CNC-S)-(CNC-H) (Yu et al., 2013, pp. 22-28)
(PGMA)/(BCNW) (Martínez-Sanz et al., 2013, pp. 2062-2072)
(PLA)/(CNF) (Jonoobi et al., 2010, pp. 1742-1747)
Polystyrene/CNCs (Lin & Dufresne, 2013, pp. 5570-5583)
(PHEMA)/CNCs from cotton (Tatsumi et al., 2012, pp. 1584-1591)
(PVA)/NFC-BC (Yuwawech et al., 2015, p. 69)
Epoxy/MFC-BC (Shao et al., 2015, pp. 244-254)
Note. Poly(lactic acid) (PLA), Poly(L-lactide) (PLLA), Nanofibrillated cellulose (NFC), Bacterial 
cellulose(BC), Micro fibrillated cellulose (MFC), Stereolithographic resins (SLRs), cellulose nanocrystals 
(CNCs), Spray dried cellulose nanocrystals (CNCSD), Polypropylene (PP), Polyurethane (PU), Poly(lactic 
acid)-poly(hydroxybutyrate)  (PLA-PHB), Surfactant modified (s-CNC), Maleic anhydride (MAH), 
Polyvinyl alcohol (PVA), Polypropylene (PP), Microcrystalline cellulose (MCC), Nanoparticles (NPs), 
Poly(methyl methacrylate) (PMMA), Styrene butadiene rubber (SBR), Poly (d, l-lactide-co-glycolide) 
(PLGA), Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), Cellulose nano particles obtained by 
sulphuric acid hydrolysis (CNC-S), Cellulose nano particles  obtained by hydrochloric acid hydrolysis 
(CNC-H), Poly(glycidyl methacrylate) (PGMA), Bacterial cellulose nanowhiskers (BCNW), Cellulose 
nanofibre (CNF), Poly(2-hydroxyethyl methacrylate) (PHEMA), Cellulose nanocrystallites (CNC), Silver 
nano particles (Ag-NP), Nitrile rubber (NBR).



Nano Fibre Technology

1063Pertanika J. Sci. & Technol. 25 (4): 1051 - 1072 (2017)

Applications of Nano Fibres

Nano fibres exhibit special properties mainly due to extremely high surface to weight ratio 
and extremely small size, which make them appropriate for a wide range of applications. 
The wider applications of nano fibres in different industrial fields are shown in Figure 13 
[http://www.nano109.com]. Nano fibres developed by electrospinning and solution blowing 
also show extensive applications particularly for biomedical due to their high surface area, 
excellent mechanical properties and enhanced porosity in diverse tissue engineering field as 
potential scaffolds, musculoskeletal tissue engineering, bone tissue engineering, cartilage 
tissue engineering, ligament tissue engineering, skeletal muscle tissue engineering, skin tissue 
engineering, blood vessel tissue engineering and neural tissue engineering. Nano fibres have 
also been used for DNA, protein and enzyme delivery (Vasita & Katti, 2006, p. 15).
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Cellulose nano fibres have shown great potential in several applications including 
biomedical, bioimaging, nanocomposite, gas barrier films and optically transparent functional 
materials (Chirayil et al., 2014, pp. 20-28). In air filtration, medicine, drug delivery and 
acoustic science, nano fibre materials are integrated deep inside finished products and they 
function as a unique component. Thus, cellulose nano fibre is seen as a promising alternative 
or substitute for use in a wealth of fields including filter material, electronic devices, high 
gas barrier packaging material, foods, cosmetics, medicine and health care. The carbon nano 
fibre is also regarded as a prospective material in many industrial fields of electronics, energy 
conversion, electromagnetic shielding, self-sensing, nanostructured core processor, storage, 
and nanostructured carbon filler in the polymer composite industries (Baeza et al., 2013, pp. 
841-855; Vilaplana et al., 2013, pp. 4776-4786) and as a superior anode material for lithium-
ion batteries (Wang et al., 2015, pp. 285-292).
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Applications of Nano Fibres Based Polymer Composites 

Currently, nanocomposite research and technology gets extensively broader showing diverse 
and widespread submissions that encompass areas of bio-medical, data storage, computing and 
electronics, furniture, appliances, bulletin board substrate, lubricants and scratch free paints, 
UV protection gels, anti-corrosion barrier coatings, sporting goods, aerospace components, 
automobiles and military applications (Alateyah  et al., 2013). Nanocomposites have also 
been introduced in structural applications such as constructional parts, gas barrier films, 
scratch/abrasion resistant materials, scratch-resistant coating, flame-retardant cables, etc. 
Moreover, resin transfer molding (RTM), vacuum assisted resin transfer moulding (VARTM), 
resin film infusion (RFI), autoclave processing and filament winding techniques can be used 
to manufacture nanocomposite parts for various applications including commercial aircraft 
structures for Boeing, Airbus, as well as many products in the industrial markets (Hussain et 
al., 2006, pp. 1511-1575). Nanocomposites show a great interest  in numerous automotive 
and general/industrial applications, on the account of their potential usage for utilisation as 
mirror housings on various vehicle types, door handles, engine covers and intake manifolds, 
timing belt covers, fuel tank and fuel line components for cars (http://tifac.org.in/index) (Jeon 
& Baek, 2010, pp. 3654-3674). Moreover, some general applications that are currently being 
considered include their usage as impellers and blades for vacuum cleaners, mower hoods, 
power tool housings and covers for portable electronic equipment such as mobile phones, 
pagers, etc. The applications of polymer nano fibres are shown in Figure 14 (http://www.
azonano.com/article.aspx).

Nano fibre polymer composites also receive attention in structural application sectors such 
as scratch-resistant coating, gas barrier films and flame-retardant cables. Wide opportunities 
for nanocomposites in biomedical applications can precisely be for drug delivery, regenerative 
medicine, while their uses as bio-actuators and biosensors are also well recognised (Gaharwar 
et al., 2014, pp. 441-453).
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Nano fibre composites also provide diversity in applications beyond niche and functional 
markets in the high-performance bodies and components of airplanes and aircrafts. Nowadays, 
nano fibres based composites have also been introduced as an emerging technology in the 
automotive industry worldwide. They are used as interior and under-bonnet parts, coating and 
fuel system components, external body parts in automotive and military components owing to 
their superior and extraordinary properties. Carbon nano fibre based polymer composites are 
able to be applied as promising materials in many fields including electrical devices, electrode 
materials for batteries, supercapacitors and  sensors (Feng et al., 2014, pp. 3919-3945; Eslami 
et al., 2015, pp. 22-31).

CONCLUSION AND FUTURE PERSPECTIVES

Currently, materials science research and engineering technology are more inclined towards the 
production of thinner, lighter, cheaper and stronger composite structures through incorporation 
of nano fillers in the matrix. Multifunctional nanocomposite materials clasp the potentiality 
of redefining the matter of conventional composite materials in many potential engineering 
applications, in terms of high performance, outstanding optical, electrical, thermal and 
mechanical properties. Nano fibres are alike to the other nano-sized fillers exhibiting special 
property such as extremely high surface to weight ratio, which makes them appropriate for a 
wide range of applications. The high aspect ratio of the nano fibres offers benefits in a much 
smaller weight fraction compared to micro-sized fibres in high performance applications. Nano 
fibres from natural resources (nano cellulose) and nano carbon are presently considered as an 
active area of research. Carbon nano fibres are the most promising alternative to the expensive 
carbon nano tubes and high functional carbon black in various applications. Their low cost and 
ease of dispersion in polymers compared to carbon nanotubes make them suitable fillers for 
producing heat dissipating polymer composites (TIMs). Nano cellulose fibres are the other one 
dimensional and renewable nanomaterials used as fillers within polymeric matrix in developing 
multifunctional nanocomposites.

In the future, the nano green fibres from agricultural bio wastes such as oil palm wastes (oil 
palm ash, OPEFB, trunk and frond), rice and wheat husk, coconut wastes and straw will bring 
more opportunities to create new and unique composite materials for extending the application 
field in crafting higher value-added consumer products. Furthermore, green nanocomposites 
or biodegradable nanocomposites will bring revolution in managing the world’s major waste 
disposal problems and other related activities.
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